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Abstract

The paper introduces a ‘‘soft table’’ for the natural frequencies and modal parameters of uniform circular
plates with elastic edge support. In contrast to conventional tabulations on paper, the ‘‘soft table’’ allows to
save space and display parameters for required number of vibration modes. The ‘‘soft table’’ is realized in a
collection of Matlabs codes that calculate natural frequencies and mode shape parameters for a given set
of translational and rotational constraints and modifiable Poisson ratio. Calculations of natural frequencies
and modal parameters for a wide range of constraints revealed distinctive regions where the frequencies and
parameters could change considerably. Knowing position and extension of these regions could be essential
for design and vibration control of structures incorporating circular plates.
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1. Introduction

Continuous circular plates are widely used as structural elements in many aerospace, marine
and civil applications. When subjected to the dynamic load, structures incorporating circular
plates often exhibit several vibration modes, which may be associated with this structural element.
As a result, vibrations of continuous uniform circular plates have been extensively studied for
decades showing that straightforward and relatively simple analytical solutions exist for many
complex problems. Recent investigations have reiterated the efficiency of the classical approach
[1,2] in analyzing the dynamic behavior of variety of structures ranging from a riveted hatch [3]
and viscoelastic sandwich circular plate [4] to applications in damage detection [5] and smart
materials [6].

Although the circular symmetry of the problem allows for its significant simplification,
additional difficulties often arise due to uncertainty of boundary conditions. This uncertainty
occurs because, in many practical applications, the edge of the plate is not free, clamped, or
simply-supported. When the plate’s boundary conditions depart from ‘‘classical’’ cases, elastic
translational and rotational constraints should be considered. One of the earliest formulations of
this problem was presented by Leissa [1], who tabulated a frequency parameter for four vibration
modes of a simply supported circular plate with varying rotational stiffness. Further extension of
the work [7] included numerical results obtained using the Fourier solution and the Ritz method.
Avalos et al. [8,9] studied vibrations of stepped circular plates elastically restrained against both
translation and rotation. Authors presented an approximate solution in terms of polynomial
coordinate functions and tabulated results for a number of vibration modes. Tabulations
provided by Avalos et al. are perhaps the most comprehensive reference available on the subject.
It should be noted, however, that only four values of translational and rotational stiffnesses were
considered (two of which are 0 and 1) and a very limited number of vibration modes were
presented. Azimi [10] reported a broader range of results for both edge and interior supports, but
rotational constraints were not included in the study. The effect of internal elastic translational
supports was recently investigated by Wang and Wang [11], who observed the switching between
axisymmetric and asymmetric vibration modes. An extensive review of the modal properties of the
elastically restrained beams and plates was presented by Kang and Kim [12]. Authors followed the
analytic approach in calculating the complex rotational and translational stiffnesses and a
complex loss factor. The results for the first vibration mode of the circular plate were shown as a
3-D dependence of a normalized natural frequency and loss factor versus rotational and
translational stiffnesses. Unfortunately, the authors did not tabulate their results. In contrast,
Ashour [13], who studied vibration of variable thickness elastically restrained rectangular plates,
presented illustrations for two vibration modes and tabulated frequency parameters up to the fifth
mode.

It is worth noting that circular plates are widely used in modeling various fluid–structure
interaction problems. Previous assumptions of the ‘‘classical’’ boundary conditions (for example
free plate in Ref. [14]) were recently expanded by Rdzanek et al. [15], who included effects of
rotational and translational edge stiffnesses in the analytical formulae for the radiated sound
power.

The literature shows that although vibration of elastically restrained circular plates is of a
considerable interest, availability of tabulated data is severely limited. In particular, previous
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studies that considered circular plates with both translational and rotational constraints were
restricted to a few low-frequency vibration modes. For these modes, the frequency parameter was
calculated using only several translational and rotational stiffnesses in a 0–1 range (4 in Ref. [8,9]
and 2 in Ref. [15]). Thus, it is very difficult to use these results in establishing potential data trends.
In contrast to studies on the free edge plates [14,16], no data are available for a mode shape
parameter and on the effect of the Poisson ratio.

The purpose of this paper is to provide an extensive ‘‘soft’’ reference table that: (a) considers a
general case of an elastic boundary condition at the plate’s circumference, i.e. both translational
and rotational constraints; (b) includes frequency and mode shape parameters; (c) permits
tabulating parameters for various Poisson coefficients; (d) allows for representing a desired
number of mode shapes; (e) could be incorporated as a subroutine in other research codes.
2. Analytical formulation

In the classical plate theory [1,2], the following fourth-order differential equation describes free
flexural vibrations of a thin circular uniform plate:

D � r4wðr; y; tÞ þ rhq2wðr; y; tÞ=qt2 ¼ 0 (1)

where D ¼ Eh3=12ð12n2Þ is the flexural rigidity of a plate and h, r; E, n are the plate’s thickness,
density, Young’s modulus and the Poisson ratio, respectively. Displacement in Eq. (1) can be
presented as a combination of spatial and time-dependent components wðr; y; tÞ ¼ W r; yð ÞT tð Þ: It
is well established that the spatial solutions of Eq. (1) are flexural mode shapes of the form

W mnðr; yÞ ¼ AmnðJnðLmnr=aÞ þ CmnInðLmnr=aÞÞ cosðnyÞ; n40, (2)

where a is a radius of the plate and Lmn; Cmn, Amn are the eigenvalues, mode shape parameters and
normalization constants. Indexes m and n are positive integers and correspond to the number of
concentric circles and nodal diameters in each flexural mode. It is apparent from Eq. (2) that in
order to describe a flexural mode we need to know Lmn; Cmn, Amn. These constants are determined
from boundary and normalization conditions.

Considering an elastically supported plate presented in Fig. 1, boundary conditions (at r ¼ a)
can be formulated in terms of effective translational KT and rotational KR stiffnesses

Mr a; yð Þ ¼ KR

qW

qr
a; yð Þ, (3)

and

Vr a; yð Þ ¼ �KT W a; yð Þ, (4)
Circular plate
KR KR

KTKT

Fig. 1. A thin circular plate with translational KT and rotational KR elastic edge constraints.
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where the bending moment and the Kelvin–Kirchhoff shearing force are defined as

Mr ¼ �D
q2W

qr2
þ n

1

r

qW

qr
þ

1

r2
q2W

qy2

� �� �
(5)

and

Vr ¼ �D
q
qr

r2W þ 1 � nð Þ
1

r

q
qy

1

r

q2W

qrqy
�

1

r2
qW

qy

� �� �
. (6)

Combining Eqs. (3)–(5) and (4)–(6) we obtain two equations for mode shape parameter Cmn:

Cmn ¼ �
Jp2� 2

Lmn
nþ aKR

D

� �
Jm1 � 2 þ 4nn2

L2
mn

� �
JnðLmnÞ

Ip2þ 2
Lmn

nþ aKR

D

� �
Ip1 þ 2� 4nn2

L2
mn

� �
InðLmnÞ

(7)

and

Cmn ¼ �
�Jm3þ 2Jp2

Lmn
þ 3 þ

4þ4 2�nð Þn2

L2
mn

� �
Jm1 þ

8 3�nð Þn2

L3
mn

� 4
Lmn

� 8a2KT

L3
mnD

� �
JnðLmnÞ

Ip3þ 2Ip2
Lmn

þ 3 �
4�4 2�nð Þn2

L2
mn

� �
Ip1þ 8 3�nð Þn2

L3
mn

þ 4
Lmn

� 8a2KT

L3
mnD

� �
InðLmnÞ

, (8)

where

Jm1 ¼ Jnþ1ðLmnÞ � Jn�1ðLmnÞ; Jp2 ¼ Jnþ2ðLmnÞ þ Jn�2ðLmnÞ,

Jm3 ¼ Jnþ3ðLmnÞ � Jn�3ðLmnÞ; Ip1 ¼ Inþ1ðLmnÞ þ In�1ðLmnÞ,

Ip2 ¼ Inþ2ðLmnÞ þ In�2ðLmnÞ; Ip3 ¼ Inþ3ðLmnÞ þ In�3ðLmnÞ.

Elimination of Cmn between Eqs. (7) and (8) yields the frequency equation, which allows to
determine eigenvalues Lmn: For these eigenvalues, the mode shape parameters Cmn could be
calculated using Eq. (7) or Eq. (8).

The amplitude of each vibration mode in Eq. (2) is set by the normalization constant Amn

calculated according to the following normalization condition:

Z 2p

0

Z a

0

W mnðr; yÞW pqðr; yÞr dr dy ¼ Mdmpdnq, (9)

where M is a mass of the plate; dmp ¼ dnq ¼ 1 if m ¼ p; n ¼ q and dmpdnq ¼ 0 if map or naq:
Considering mode shapes (2) in the normalization condition (9), the dimensionless normal-

ization constant Amn is

Amn ¼
1

pa2

Z 2p

0

Z a

0

ððJnðLmnr=aÞ þ CmnInðLmnr=aÞÞ cosðnyÞÞ2r dr dy
� ��1

. (10)

In Eqs. (2) and (3), omn ¼ L2
mn



a2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
is a natural frequency of flexural vibrations

dependent on the eigenvalues Lmn and plate’s radius a.
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3. Matlab
s

code

Eqs. (7)–(10) were implemented in the Matlabs code CP_elastic.m which calculates
eigenvalues Lmn; modal parameters Cmn and normalization constants Amn for a given set of elastic
boundary conditions. These boundary conditions were defined as follows:

T ¼ a3KT=D; R ¼ aKR=D. (11,12)

The input parameters of the program include: transverse and rotational stiffness ratios (11) and
(12), Poisson ratio n; N—upper bond for eigenvalues Lmn; suggested step for Lmn finding�d, and a
number of mode shape diameters�n. For a given input parameters, CP_elastic.m calculates
Lmn on the interval [0 d*N] using a build in Matlabs root finding function fzero. This is
achieved via subroutine elastic_flexural.m containing Eqs. (7) and (8). The algorithm first
attempts to find zeros of Eqs. (7) and (8) on the interval [0 d]. Then, it records results of the
search, progresses to the next interval d, and continues root finding until d*N is reached.
Essentially, this procedure defines a vector of m eigenvalues Lm for a given n. Calculated
eigenvalues are then used in elastic_flexural_C.m subroutine (Eq. (7)) to obtain Cm. An
integral expression (10) gives normalization constants Am. The code CP_elastic.m allows for
displaying calculated parameters in a desired format and saving data using Matlab’s ‘‘diary on’’
feature. The output window of the code with calculated modal parameters is shown in Fig. 2. Due
to the open architecture of the program, a user can modify both the algorithm for calculating
modal parameters and representation/saving of the data. To run the code, one needs to copy
CP_elastic folder into Matlab’s work directory and open CP_elastic.m.
4. Results and discussion

The advantage of the developed code is that it provides a reference for any translational and
rotational constraints including intermediate values. The Poisson ratio could be adjusted
accounting to various materials of the plate. Such a broad range of results, to our knowledge, is
not available in the literature yet. However, we have compared the obtained results with
Fig. 2. Output of the program showing calculated eigenvalues and modal parameters for a particular set of R, T and

Poisson ratio n:
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previously published data. The illustration of one of such comparisons is presented in Table 1,
depicting eigenvalues, mode shape parameters and normalization constants for the first vibration
mode. For the squared eigenvalues, i.e. Omn ¼ L2

mn; the agreement with previous works is 0.07%
[8] and 0.14% [10]. The precision of the results in most of the references is three significant digits.
Our calculations were done to 12 significant digits and the values averaged to 4 significant digits
are presented in Table 1. Precision of results was controlled by the Matlabs algorithm for
calculating Bessel functions.

Due to space limitation, we do not present comparison for higher vibration modes, but they are
in good agreement, which can be easily verified by a reader. Table 1 does not include any
comparison of mode shape parameter Cmn and normalization constants Amn because, for the case
of the elastic support, we did not find any published data. Refs. [14,16], which include data for
Cmn, consider plates with free edge. The Amn is tabulated by Itao and Crandall [16]. The results
obtained with the developed code are in very good agreement with these two references.

Fig. 2 shows that the program determines modal parameters for a specific set of boundary
conditions and Poisson ratio. However, core elements of the code could be included in other
algorithmic structures for automation of laborious calculations or establishing potential data
trends. This approach was used to obtain dependencies for Lmn depicted in Fig. 3. In the figure, we
present eigenvalues Lmn as a function of translational (T) and rotational (R) constraints that
varied in the 10�2–106 range.

Small R and T (i.e. when both R ! 0 and T ! 0) in the figure exemplify the ‘‘free edge’’
boundary condition while large R and T (R ! 1 and T ! 1) correspond to the ‘‘clamped’’
Table 1

Frequency and mode shape parameters for the mode 00; Poisson ratio is 0.3

Pr. [8,10] Pr. — Pr. [8,10] Pr. [10] Pr. [8,10]

R T: 0 10�2 1 102
1

N O00 — — 0.1414 1.4068 1.406 8.8232 10.216 10.215

C00 — — 0.9652 0.7031 0.0909 0.0557

A00 — — 0.5089 0.5993 1.8460 2.2152

102 O00 — — 0.1414 1.4064 8.6878 10.019

C00 — — 0.9645 0.6982 0.0898 0.0557

A00 — — 0.5091 0.6014 1.8399 2.1942

1 O00 — — 0.1414 1.3880 1.387 5.6964 6.0629 6.062

C00 — — 0.9360 0.5190 0.0228 0.0092

A00 — — 0.5168 0.6892 1.8072 1.9279

10�2 O00 — — 0.1414 1.3740 4.7416 4.9499

C00 — — 0.9145 0.4096 �0.0272 �0.0361

A00 — — 0.5227 0.7560 1.8631 1.9440

0 O00 — — 0.1414 1.3737 1.374 4.7287 4.735 4.9352 4.942

C00 — — 0.9142 0.4078 1.373 �0.0281 �0.0369 4.935

A00 — — 0.5228 0.7572 1.8643 1.9446
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case. The ‘‘simply supported’’ boundary conditions could be accounted for by setting R ! 0 and
T ! 1: Fig. 3 shows that the distribution of eigenvalues is not uniform and its shape significantly
depends on vibration mode. For example, when T ! 0 the eigenvalues L00 of the first vibration
mode approach zero because the plate exhibits rigid body translation. This translation is
unaffected by rotational constraints, whose contribution is noticeable only at large T. However, a
distinctively different situation is observed for the L01 vibration mode with one nodal diameter
that features smooth transition from the rigid body rocking at R ! 0 and T ! 0 to vibrations
controlled by rotational constraints at arbitrary R and T ! 0: In contrast to the rigid body
translation, rocking could be restrained by rotational constraints. Fig. 3 shows several regions
where eigenvalues Lmn change noticeably. The smoothened stepped variation is observed for both
R and T and the steepness increases with the mode number. As the mode number increases, the
stepped region moves toward the ‘‘clamped’’ boundary condition. Interestingly, stepped variation
of T is much more profound than that of the R. For instance, for nine vibration modes presented
in Fig. 3, position of the stepped region with respect to R changed very little and falls within 1–100
range. In contrast, position of the stepped region with respect to T moved gradually from the
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Table 2

Frequency parameter O10 calculated for various Poisson ratios and respective translational (T) and rotational (R)

constraints

T, R Poisson ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7

T ¼ 0; R ¼ 0 8.51982 8.77183 9.00314 9.21637 9.41367 9.59685 9.76745

T ¼ 1; R ¼ 1000 14.73613 14.73613 14.73613 14.73613 14.73613 14.73613 14.73613

T ¼ 100; R ¼ 100 22.14098 22.14098 22.14099 22.14099 22.14099 22.14099 22.14099

T ¼ 1000; R ¼ 1 29.59984 29.67881 29.75614 29.83191 29.90614 29.97888 30.05017

T ¼ 1012; R ¼ 1012 39.77115 39.77115 39.77115 39.77115 39.77115 39.77115 39.77115

A. Zagrai, D. Donskoy / Journal of Sound and Vibration 287 (2005) 343–351350
range of 1–100 to 102–104. Knowing position of the region where eigenvalues change drastically is
essential for vibration control and structural design.

Table 2 shows the effect of Poisson ratio on the frequency parameter O10 for various boundary
conditions around the plate’s circumference. An analytical solution for the ‘‘clamped’’ case is
known to be independent on Poisson ratio n [1]. Similarly, numerical calculations for R ! 1 and
T ! 1 show that O10 is unaffected by n: In contrast to the ‘‘clamped’’ boundary condition, O10

for the ‘‘free’’ plate increases considerably with increase in Poisson ratio. This observation is
consistent with the results obtained in Ref. [14] for ‘‘free’’ plates. Table 2 illustrates that for small
R results are dependent on n: If R is large, frequency parameter O10 are n independent for any T.
5. Conclusions

This paper introduced a ‘‘soft table’’ for eigenvalues, mode shape parameters and normal-
ization coefficients of a circular plate with elastic (translational and rotational) edge supports. The
‘‘soft table’’ is realized in an open Matlabs code [17] and is available for free download from the
file exchange website (http://www.mathworks.com/matlabcentral/fileexchange/) or from one of
the author’s website (http://personal.stevens.edu/
azagrai/index/publications.html). In contrast
to conventional approach which represents calculated results in a tabular format on paper, the
‘‘soft table’’ allows to save space and display virtually any number of modal parameters. The
program could be conveniently modified by a user and advantageously used either as a reference
tool or as a subroutine in related research projects.

Comparison of results presented in this paper with the results of previously published research
shows good agreement. Three-dimensional plots of eigenvalues and mode shape parameters
versus wide range of translational and rotational constraints could be potentially used in
structural design and vibration control. For instance, Fig. 3 shows that eigenvalues change
drastically only in a limited range of constraints specific to each vibration mode and are
stable elsewhere. Effect of the Poisson ratio is considerable only for the ‘‘free’’ plate but could
be still noticeable for weak rotational constraints. The ‘‘soft table’’ code allows for duplicating
this work and further expanding presented results to include higher vibration modes or other
Poisson ratios.

http://www.mathworks.com/matlabcentral/fileexchange/
http://personal.stevens.edu/azagrai/index/publications.html
http://personal.stevens.edu/azagrai/index/publications.html
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